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A classification of the probability distribution of linear multiplicative noise equations is developed
which has a variety of physical applications; for example, to the temperature field of a turbulent fluid
undergoing a chemical reaction. Without a reaction the tails of the distribution are shown generically
to have exponential or stretched exponential behavior. With a reaction occurring, the tails cross

over to power-law behavior.

A simple criterion in terms of the generalized Lyapunov exponents

for the system explain this kind of behavior. Rigorous results for the existence of power-law tails
under general symmetry conditions are presented and are easily understood in terms of generalized

Lyapunov exponents.

PACS number(s): 64.60.Ht, 02.50.—r, 05.40.+j, 47.25.—c

I. INTRODUCTION

There are many problems in which general classifica-
tion schemes have proved useful in understanding phys-
ical phenomena. Examples of this occur in the study of
phase transitions, field theory, and nonlinear dynamics.
Nonequilibrium statistical mechanics appears to have less
generality than the above cases, although recently there
has been progress made in classifying generic behavior of
particular types of nonequilibrium systems [1-3].

In this Rapid Communication another category of
nonequilibrium system is examined, the case of linear
equations containing multiplicative and additive noise.
Equations of this type are quite common in physics. For
example, the problem of a passive scalar such as a dye,
convected by a random velocity field, has been the focus
of much recent attention [4-14]:

Orp + Oy v = dO,,.d. (1)

The (implicit) sums over the index p are from 1 to the
dimension of the system. In two and higher dimensions
this is normally studied with the incompressibility condi-
tion 8,v, = 0. dis a diffusion constant, and v = v(r,?)
is a random function of position and time. This equation
involves multiplicative noise because the random velocity
v multiplies the dependent variable ¢. The Schrodinger
equation with a random time-dependent potential is an-
other example [15, 16], and this is closely related to wave
propagation in random media [17,18]. Population growth
models which are relevant to chemical reactions [19] and
population biology [20, 21] are often of this form

O = ap+ fo+ douud, (2)

where f is a random function of position and time, and
a and d are parameters. Polymers in turbulent flow are
modeled by such equations [22, 23].

Additive noise should often be included in these equa-
tions. In the case of passive scalar fields, this corresponds
to including thermal fluctuations in the velocity of the
flow superimposed on the turbulent motion and the effect
of boundary conditions on the fluid far from a boundary.
For polymers in turbulent flow this corresponds to includ-
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ing the Brownian motion of the individual atoms of the
polymer chain. It will be shown analytically that under
a certain general symmetry condition the probability dis-
tribution for the order parameter ¢ has a power-law tail,
P(¢) < 1/¢P. The exponent characterizing the asymp-
totic decay of the probability distribution is in general a
function of the strength of the multiplicative noise, but
not the additive noise. Also this behavior is quite robust
in the sense that it is also seen even if the multiplicative
noise is not white and is not Gaussian, as will be seen
later in this paper. An important question is what de-
termines the existence of power laws for such equations.

When this symmetry condition is violated as it is for
passive scalar fields, Eq. (1), then another behavior for
the tail of the probability distribution is possible, such as
stretched exponential behavior. This stretched exponen-
tial behavior is relevant to a variety of experimental situ-
ations and has been the focus of intense experimental [4,
5] and theoretical [5, 8, 10-14] investigations. The theo-
retical approaches taken so far have constructed physical
models to explain this intriguing result. The approach
taken here is different and argues that this stretched ex-
ponential behavior is simply a result of a conservation law
for Eq. (1) and the general properties of multiplicative
random equations. There is no reference to any detailed
physical model. A prediction of this work is that the tail
should become a power law when an exothermic chemical
reaction takes place during advection of the field.

A related one-component problem has recently been
considered by Drummond [24]. The additive and multi-
plicative noises were taken to be generated by the same
random process. In this case two types of behavior are
possible. In one regime the probability distribution has
power-law tails. The other regime has all its moments
defined. He conjectured that this behavior should hold
for n components. The case considered in this paper
takes the additive and multiplicative noises as indepen-
dent. This case is amenable to a complete understanding
for an n-component system as described below. For the
one-component case, the case of arbitrary temporal corre-
lations, or short-range non-Gaussian multiplicative noise,
can be fully analyzed. In all these cases it will be seen
that the generalized Lyapunov exponents for the system
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in the absence of additive noise completely determine the
behavior with additive noise present. A simple criterion
for when power-law tails are present will be derived.

The stability of the nth moment of ¢ in the absence
of additive noise has been studied by the introduction
of Lyapunov functions [25]. If such a function can be
found this provides a method for determining the stabil-
ity of moments. The addition of additive noise can be
incorporated into this method, but does not provide a
classification of the kinds of behavior expected for the
tails of the distribution.

We will start by considering the coupled differential
equations

¢=M-¢p+A-¢p+n. (3)

¢ = (¢1,92,...,Pn) represents the variables of interest,
such as dye density as a function of position. The matrix
M is taken to be random and short range correlated in
time (Mij(t)Mkl(tl» = 2Fijkl(5(t — t/). A is taken to be
time independent. For the moment we shall consider the
case where the additive noise term 7 is zero. The formal
solution of this equation is

o(0) = Texo( "M(r) + Adr)(0), (4)

where T denotes the time ordered product, and is essen-
tially the same as the problem of the multiplication of
t/At random matrices exp[At(M + A)]. This is a well
studied problem where general theorems have been es-
tablished. One theorem [28] states that there is a well
defined rate of exponential divergence of |¢(t)| for suffi-
ciently long times. Higher moments of ¢ such as ¢? also
show exponential divergence but, in general, with differ-
ent exponents. One can define a generalized Lyapunov
exponent L(g) by [26, 27]

($7) o< M DF, (5)

where the brackets denote an ensemble average over the
noise M. From this it can be seen that the probability
distribution for a component of ¢, say, ¢ has a probability
distribution

InP(lng) oc tf(Ingp/t) + O (lnTt) . (6)
This can also be seen by making thermodynamic analo-
gies [26,27], and is quite similar to the discussion of f(a)
in the literature on multifractals.

For a system described by such a multiplicative noise
equation, such as dye diffusion in a random velocity field,
such behavior should be observed for long times, for the
probability distribution for dye density.

One can obtain the different L(g)’s as being the the
lowest eigenvalues for a set of linear operators as fol-
lows. Using standard methods [29] it is possible to de-
rive the equations for the moments of ¢. For the specific
case of the population growth model, this has been re-
cently done in Ref. [21]. Define o = (a1, 2,...,a,)
and B8 = (51,02,---,0,) where the o;’s and B;’s can
take on any integral value between 1 and N. Define
ba = (PoyPay - - - Pa,.)- Then the equation for the nth
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moment can be written in the form

d¢
D (tap = Gap)bs = ——7, (7)
B
where
Ao, = — Z H 0a;.8; | AasBis (8)
=Gk
and
n N n
Gap = Z Z Loivvs: 0a;,8
i=1~y=1 i
J#
+Z[Fmﬁia;‘ﬁj + Faeﬂjajﬁi] H bk B - (9)
i k#i,j

i<j

The long time rate of divergence of ¢4, L(gq), is given
by the lowest eigenvalue in Eq. (7). Note that generically
all components of ¢, diverge with the same exponent.

Next we examine the behavior of systems of the type
described by Eq. (3) when there is white noise 7 included
in Eq. (3). 7 is taken to be white and uncorrelated
(mi(t)n; (")) = D&(t — ') ;5.

We first motivate the discussion by examining the spe-
cial case of one component, N = 1, where the probability
distribution can be solved exactly by standard means by
writing down the Fokker-Planck equation describing its
time evolution [29]. In the steady state the problem re-
duces to solving a second-order linear ordinary differen-
tial equation with the appropriate boundary conditions.
One obtains

P(¢) !

(T¢% + D)z —A/T’ (10)

which shows a power-law tail that depends continuously
on A and T' and is independent of the strength of the
additive noise D. The result here is similar to the three-
dimensional case examined in the context of polymers in
turbulent flow [22].

Returning to the more general case of IV variables, the
moments in steady state have values

b = Y (a—G)7', 5Ng, (11)
B

where N is

No = DE 5aiaaj¢alv--ai~1:ai+1y~<aj—1aaj+1;~~aN'
i3
i<j
(12)

Having a power-law tail in the probability of a compo-
nent of ¢ is equivalent to having ¢, diverge at some finite
n. This corresponds to the point where the lowest eigen-
value of a — G passes through zero. Since the lowest
eigenvalue of a — G equals —L(gq), then the first value of
g, ¢*, which has divergent moments is where L(g*) = 0.
The behavior of the probability distribution for large ¢
is therefore P(¢) o ¢ 1,

It is straightforward to demonstrate that ¢* is fi-
nite [30] when we restrict M(t) to be invertible and ei-
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ther real symmetric or real antisymmetric. If one makes
the choice @ o (1,1,...,1), then the scalar product
¢ - (a—G)- $ can be evaluated. For sufficiently large
n it goes negative, showing that at least one eigenvalue
of a — G, and hence L(q), has gone through zero, giving
power-law tails.

The above argument shows that for a system described
by Eq. (3), and with the correct symmetry, there must
always be moments of the ¢’s that diverge if sufficiently
high moments are examined. All of the moments of a
given order are expected to diverge at the same time, if
the matrix I' is not of block diagonal form. This means
that (¢7) should diverge at the same n as (¢52¢3), for
example. Note that the divergence is not dependent on
D, the strength of the additive noise, and thus the power
law should also be unaffected by this. The power-law tail
should only depend on I" and A.

If the random matrix M is not either symmetric or
antisymmetric then there is no guarantee that L(g) will
pass through zero. In fact, for Eq. (1), L(g) should
remain negative for all ¢. This can be seen easily as
follows. First, [¢(r)dr taken over the entire volume
is conserved, and second, if ¢(r) is positive for all r it
must remain so. Therefore for a discretized lattice model,
there is a maximum to the value that ¢(r) can achieve
and therefore L(g) can never become positive. Off lattice
the viscosity acts as a short distance cutoff and should
give the same result.

If a term a¢ is added to the right hand side of Eq. (1)
then this has the effect of shifting L(q) to L(q) + ag. In
this case, for any a > 0, L(g) will intersect the g axis so
that power-law tails for the probability distribution will
be seen. We shall return to this case below.

The above arguments assume that the randomness in-
herent in the matrix M is Gaussian and short range. It
is possible to analyze both assumptions separately for a
one-component system and show that the same power-
law behavior should be present when these assumptions
are relaxed. Consider the equation

é = F(t)+n(D). (13)

One can consider the case where (a) f(t) is Gaussian and
has arbitrary correlations in time, and (b) f(¢) is short
range in time, but is not Gaussian. For case (a) the
power-law tail can be computed [30] and is P(¢) x ¢~ P,
where

p = 1/2-(f('5)>//_0o (F(£)£(0))cdt. (14)

Therefore the power-law tail only depends on the power
spectrum at zero frequency.

Case (b) has also been analyzed. In the absence of
7, that is, additive noise, one can characterize the ran-
domness f by having it give rise to generalized Lyapunov
exponents L(q) for the gth moments, as in Eq. (5). Then
in the presence of additive noise, the steady-state value
of the 2nth moment is [30]

() = (2n) (%}) 11 —za7 (15)

For 2n > g* this expression diverges. This shows that the
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critical n at which moments diverge is identical to that
found above in the multicomponent case with Gaussian
noise.

Is there an underlying reason why the multidimen-
sional Gaussian case should give the same result as the
one-dimensional non-Gaussian one? A simple heuristic
argument can be given to support the notion that the
multidimensional case is essentially one dimensional in
character. If one considers the case of no additive noise,
then the vector ¢ will randomly vary as a function of
time. One can normalize ¢ defining ¢’ = ¢/|p|. Then
@' will settle down at some time, ¢t = to, to some “typ-
ical” conformation. For example, in the case of passive
scalar fields, the dye density will have some well defined
equilibrium correlations. After a time, ¢t = to + T4, where
T is perhaps many relaxation times, ¢’ will become close
to what it was originally. At this point the situation is
similar to what is at t = tg as far as ¢’ is concerned, but
now |¢| has changed. Because the equation of motion is
linear, it will evolve at time t = to+7} in the same way as
it did at time to, except now with a new realization of the
random noise M(t). At some still later time ¢ = tg + T5,
@' is once again close to its original configuration, but
now |¢| is the product of two independent random vari-
ables, [¢(to + T2)|/|(to + T1)| and [(to + T1)|/|b(to)]-
Therefore the evolution of |¢| can be obtained by the
multiplication of independent random numbers that are
distributed in a highly non-Gaussian way, which depends
on the detailed dynamics of the system within a relax-
ation time.

Last we examine what happens at the crossover be-
tween power-law behavior and non-power-law behavior
for P($). As mentioned above, if L(q) is always nega-
tive for ¢ > 0, one can add a term a¢ to the equation
of motion. For sufficiently large «, L(g) must cross the
origin, because L(q) is convex. What happens at the the
critical a where this crossover is about to occur? One
can classify what happens according to the behavior of
L(q) at the transition point. For the critical value of « it
has not crossed the origin, and being convex, the large gq
behavior must be slower than linear. For large ¢ one can
consider two classes. (i) Consider the class L(q) o< —¢?
with 0 < B < 1. Substituting this into Eq. (15) and
solving for P(¢), for large ¢ one obtains

P(¢) x e K (16)

where K is a constant. (ii) When L(q) approaches a
constant for large g, P(¢) < e X%, Note that for class
(i) f(a) [cf. Eq. (6)] goes to —oo, and for class (ii) f(«)
stops at a finite value.

As mentioned above, Eq. (1) should not give power-
law tails when additive noise is included. If a model such
as the 8 model for turbulence applies to this situation
[26], then the behavior is pure exponential, as in case (ii)
above. However, when a term a¢ is added to the right
hand side, power-law tails are expected. Figure 1 shows
the probability distribution of the one-dimensional ver-
sion of Eq. (1) on a log-log plot, obtained by simulation.
The incompressibility constraint is not enforced in one
dimension. The value of the power law seen depends on
a. A system with nonzero a could be realized exper-
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imentally, by having an exothermic reaction [19] occur-
ring in a fluid undergoing random or turbulent motion. If
molecules change irreversibly from type A to B, the rate
constant will in general depend on temperature. From
this it can be seen that the rate of change in tempera-
ture has a term proportional to temperature, for small
deviations in the temperature. The temperature evolu-
tion should therefore be well described by Eq. (1) with
the addition of an a¢ term and additive noise to the right
hand side. The power-law exponent should be a function
of the system size and of the type and strength of random
stirring. If the system is forced by heating of a bound-
ary, then the heat shed from it should act as an addi-
tive noise source in addition to the thermal noise already
mentioned. The strength of such a noise is expected to
be much greater than thermal noise. It is important in
this situation to keep the size of the system below the
critical size where an exponential increase in the mean
temperature occurs. Small Rayleigh-Bénard cells with a
reactive fluid in the soft turbulent regime probably offer
the easiest test of this power-law prediction.

In conclusion, linear equations with multiplicative
noise and additive noise often lead to power-law tails in
the steady-state probability distribution of a field; for ex-
ample, when the random matrix characterizing the mul-
tiplicative noise is Gaussian and either symmetric or an-
tisymmetric. This is true for systems with an arbitrary
number of components. The power law should depend
continuously on all the parameters but the additive noise.
When this symmetry condition is not satisfied, or the
noise is not Gaussian or short range, power-law tails are
still expected in a large number of circumstances. The
general criterion is that the generalized Lyapunov ex-
ponent L(g) should become positive for large enough gq.
If this is not the case, as in Eq. (1), then the behavior
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FIG.1. The probability distribution of field ¢ obeying Eq.

(1) in one dimension, when a term a¢ and additive noise are
included on the right hand side. Three different values of o
are shown. The most steeply descending curve is for « = 0,
and the next is @ = 0.47. The top curve is for « = 0.51.
The equation was discretized and the number of lattice sites
was chosen to be 8. The log base is 10.

should be either exponential or stretched exponential. By
adding a linear term a¢ to such an equation, which for
example could correspond physically to a reactive fluid,
power-law tails should be seen.
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